
Sander Rodenhuis

Debugging Microservices in Kubernetes

Debugging Microservices
in Kubernetes

Using Istio, OpenTelemetry and Grafana Tempo

Agenda

- The 3 pillars of observability
- The what and why of Distributed tracing
- Using Istio for tracing (the good, the .. and the …)
- Introducing OpenTelemetry
- Things to consider when getting started
- Observability with distributed tracing in Otomi
- Demo: Tracing with Nginx, Istio, OpenTelemetry, Prometheus,

Grafana Loki and Tempo

The 3 pillars of Observability

OBSERVABILITY

The 3 pillars of Observability

Logs
Records of events,
warnings and errors within
a microservice.
Provide insights into
events and errors during
the lifecycle of
microservices.

Traces
Data that tracks a request
as it flows through various
microservices.
Research the root cause of
a problem with a
microservices architecture
consisting out of multiple
microservices.

Logs, Metrics and Traces each provide valuable but limited visibility. Only by combining
them you’ll get the complete picture. And everything is about CONTEXT!

Metrics
Quantifiable
measurements that reflect
the health and
performance of a
microservice.
Provide real-time insight
into the state of
microservices.

Distributed tracing

- A method of tracking application requests as they flow
between microservices

- Understand the behaviour of an application consisting out of
multiple microservices

- Troubleshooting performance bottlenecks
- Fix errors, and other issues that could impact the user

experience
- But you can’t trace everything!

The basics

Trace
A complete end-to-end
path of a request or
transaction as it flows
through a distributed
system.
Represents the journey of
a specific operation as it
traverses various
components and services
in a distributed
architecture.

Span
A single operation or unit
of work within a distributed
system.
Captures the timing and
metadata associated with a
specific operation and
provides a way to track
and understand the
behavior of individual
components and services.

Context Propagation
Passing contextual
information between
different components or
services within a
distributed system.
Crucial for connecting and
correlating spans to
construct a complete trace
of a request or transaction
as it flows through various
services.

Why tracing with Istio

- Responsible for managing traffic, it can also report logs,
metrics, and traces

- Leverages Envoy's distributed tracing feature to provide
tracing integration out of the box

- A service mesh can introduce its own delays and issues
- Visibility into this layer of infrastructure is useful in

troubleshooting
- Easy to get started

Tracing using Istio (defaults)

The good
- Easy to setup
- No coding required

The bad
- Only collects partial

data with partial context
- One sampling rate for

all traffic

The ugly
- Uses Jaeger and Zipkin

format
- No active development

for Jaeger SDK
(needed for
instrumentation)

What we see in the demo

What we see of our own app

Without context propagation

Service A Service B Service C

Istio: Trace #1 Istio: Trace #2

With context propagation

Service A Service B Service C

Istio: Trace #1

Span #1 Span #2

The good news: Istio now supports OTEL

meshConfig:
extensionProviders:

 - name: otel-tracing
 opentelemetry:
 port: 4317
 service: otel-collector.svc.cluster.local

OpenTELemetry

- Framework and toolkit to create and manage telemetry data
- Can be used with a broad variety of observability backends

Components:

- Collector to receive, process and export telemetry data
- Code Instrumentation support for many languages

Otel Collector

Otel auto instrumentation

apiVersion: opentelemetry.io/v1alpha1
kind: Instrumentation
metadata:
 name: my-app-instrumentation
spec:
 propagators:
 - tracecontext
 - baggage
 sampler:
 type: always_on
 java:
 env:
 - name: OTEL_EXPORTER_OTLP_ENDPOINT
 value: http://otel-collector.otel.svc.cluster.local:4317

Considerations when getting started

- Istio is difficult, so is OpenTelemetry
- What backend to use?
- Use auto instrumentation or the SDK?
- Use Otel for everything (metrics, logs, traces)?
- Scaling of the Collector
- Sampling rates
- How to correlate telemetry data?
- How to offer a seamless experience to developers?

What is Otomi

Observability in Otomi

Otel
Collector

Using Derived Fields

Otomi on GitHub
https://github.com/redkubes/otomi-core

And if you like the otomi project, give it a

https://github.com/redkubes/otomi-core

